MEDICAL LABORATORY SCIENTIST

WHAT IS A MEDICAL LABORATORY SCIENTIST?

- Medical detective!
- Examine and analyze body fluids, tissues, and cells
- Analyze the chemical constituents of body fluids
- Identify infective microorganisms
- Identify blood clotting abnormalities
- Evaluate test results for accuracy and help interpret them for the physician
- Cross-match blood for transfusions

EDUCATION

- MLT (Medical Laboratory Technician)
 - Associate's Degree
- MLS (Medical Laboratory Scientist)
 - Bachelor's degree
 - Master's degree
 - Doctorate (first graduate in 2018)
- MLT vs MLS: What's the difference?
 - Some of the work is the same, however, MLS's have a more extensive theoretical knowledge base. This allows them to conduct more advance testing such as: cross-matching for blood transfusion, molecular diagnostics, microbiological testing, etc. MLS's are more likely to advance to management positions.

AREAS OF THE LABORATORY

- Blood bank
- Hematology
- Coagulation
- Chemistry
- Microbiology
- Immunology
- Urinalysis/ Body Fluids
- Molecular Diagnostics

COMPONENTS OF THE BLOOD

- 55% Plasma
 - Clotting factors, electrolytes, proteins, hormones, etc.
- < 1% Buffy coat</p>
 - White blood cells and platelets
- 45% Red blood cells

These levels vary from person to person!

- Study of blood, blood forming organs, and blood diseases
- Analyze complete blood count results (CBC)
- Perform differential on blood smears
 - White blood cell categorization
 - Red cell morphology
 - Platelet estimate

WHAT'S INCLUDED IN A CBC?

Abbreviation	Expanded	Definition
WBC	White blood cell count	Number of WBC's present
RBC	Red blood cell count	Number of RBC's present
HGB	Hemoglobin	Protein found in RBC's that carries oxygen to the body's tissues and organs. It also transports CO2 back to the lungs. Low levels mean you are anemic and may require a transfusion.
HCT	Hematocrit	The ratio of the volume of RBCs to the total volume of blood. Measured as a percentage.
MCV	Mean cell volume	The size of a RBC
МСН	Mean cell hemoglobin	Average mass of hemoglobin per RBC
MCHC	Mean cell hemoglobin concentration	Average concentration of hemoglobin in a given volume of blood

CBC CONT.

Abbreviation	Expanded	Definition
PLT	Platelet	Platelet count
RDW	Red cell distribution width	Variation is RBC sizes
MPV	Mean platelet volume	Average size of platelets
Neut	Neutrophil	Type of WBC. First cells to migrate to the site of infection to begin killing the invading microbes
Lymph	Lymphocyte	Type of WBC. Responsible for immune responses.
Mono	Monocyte	A type of WBC that surrounds and kills microorganisms, ingest foreign material, removes dead cells, boost immune responses
Baso	Basophil	A type of WBC that appears in inflammatory reactions, specifically allergic reactions.
Eo	Eosinophi	A type of WBC that's seen in in allergic reactions, parasitic infections, and cancer.

An example of Complete Blood Count (CBC)

- When the analyzer flags a sample as abnormal, the hematologist will make a smear and perform a manual differential.
- How to perform a manual differential:
 - Make and stain a blood smear
 - Count and classify 100 WBCs
 - Use the results from the CBC to analyze RBC morphology
 - Count the number of platelets on each field for an estimate. This is used to make sure the count from the analyzer is accurate.

Examples of red cell morphology

An example of the cell line maturation of neutrophils.

An example of Acute Myeloid Leukemia

If you start bleeding, your body will form a clot to stop. Let's take a look at the coagulation process.

Coagulation (also known as clotting) is the process by which blood changes from a liquid to a gel, forming a clot

- Process to form a blood clot
- Disorders that disrupt the process
 - Hemophilia A, B, C
 - Von Willebrand Disease
 - Factor deficiencies
- Medications that disrupt the process
 - Heparin
 - Warfarin (Coumadin)
 - Aspirin

Coagulation Tests (most common)

- Prothrombin test (PT)
 - Measures Extrinsic pathway (blue) clotting time in seconds
- Partial Thromboplastin Time (PTT)
 - Measures Intrinsic pathway (green) clotting time in seconds
- D-Dimer
 - Fibrin degradation product
 - Small protein fragment in the blood after a blood clot is broken down.
- Fibrinogen
 - Protein that's converted from thrombin to fibrin to help form a clot

- There are more coagulation tests that can be run on patients to diagnose bleeding disorders.
- This is a VERY brief overview of the coagulation process.

Now that you know what blood is composed of and how it clots, let's take a look at what happens when someone needs a transfusion.

Blood product storage

- Red blood cells
- Platelets
- Plasma
- Cryoprecipitate

Patient testing

- Antibody screen and identification
- Crossmatch for transfusion
- Rhogam workup
- Cord blood
- Elutions
- Type
- DAT

Blood Type

- Antigens on the RBCs
- Antibodies in the plasma

	Group A	Group B	Group AB	Group O
Red blood cell type				
Antibodies in Plasma	N/	して		学家
	Anti-B	Anti-A	None	Anti-B and Anti-A
Antigens in Red Blood Cell	T A antigen	P B antigen	A and B antigens	None ©

Compatibility

- Not all blood types can give to each other!
- Rh- can give to Rh+, but not the other way around

RED BLOOD CELL COMPATIBILITY TABLE Donor Recipient AB- AB+ 0-A+ B-B+ × × × X × × × 0-X X × X × × 0+ × × × × × × A-× × × × A+ × × × × X B-X × X B+ × х AB-× X х X AB+

Antibodies

- Patients can develop antibodies other than A and B
- Antibody development is due to a foreign antigen
 - Most commonly developed through a transfusion
- Pre transfusion testing to identify any present antibodies
 - Antibody screen
 - Most screens are negative
 - Positive screens require further workup. Additional panels will be used to perform a rule out.

	Rh-Hr				Kell				Duffy		Kidd		Lewis		Lutheran		Ρ	MNS			Xg			
Cell #	D	С	с	E	e	C ^W	к	×	Kpª	Jsª	Fyª	Fy ^b	Jkª	Jk⁵	Leª	Le⁵	Luª	Lu⁵	P ₁	М	N	S	s	Xgª
1	+	+	0	0	+	0	0	+	0	0	0	+	0	+	0	0	0	+	+	+	0	+	+	0
2	+	0	+	+	0	0	0	+	0	0	+	0	+	0	+	0	0	+	+	+	+	+	+	+
3	0	0	+	0	+	0	+	+	0	0	+	0	+	0	0	+	+	+	0	0	+	0	+	0

An example of a antibody screen. This panel includes clinically significant antibodies. It's like solving a puzzle!

- If an antibody is identified, extra testing has to be done to ensure the unit of blood transfused doesn't contain the matching antigen.
- If the unit of blood has the antigen that corresponds to the antibody circulating in the patient's blood, a transfusion reaction may occur due to the antigen and antibody agglutinating.

Crossmatch

- Patient plasma is tested with donor RBCs
- No agglutination = compatible unit
- Agglutination = not compatible

Traumas

 Universal blood products are given in emergent situations without a crossmatch

GO DONATE BLOOD!

If you are healthy and able, please go donate! You can save many lives by doing so.

Remember the components of blood we talked about? You can tell a lot by looking at a spun down sample.

Plasma and/ or serum is used to test the following:

- Electrolytes:
 - Na, K, Cl, Ca, Mg, CO₂
- Proteins
 - Albumin
 - Total Protein
 - C-Reactive Protein
- Kidney
 - Blood Urea Nitrogen
 - Creatinine

- Liver
 - Alkaline Phosphatase (ALKP)
 - Aspartate amino transferase (AST)
 - Alanine amino transferase (ALT)
 - Bilirubin
- Other
 - Glucose
 - Beta Hydroxybutyrate
- Thyroid
 - TSH
 - Free T3 and T4

- Therapeutic drug monitoring
 - Digoxin
 - Vancomycin
 - Gentamicin
 - Phenytoin
 - Carbamazepine
- Blood Gas
 - pH
 - O₂
 - CO_2

Now that we're done talking about the blood, let's talk about other body fluids.

URINALYSIS AND BODY FLUIDS

URINALYSIS

Analyze and interpret urine components such as:

- pH
- Specific gravity
- Color and clarity
- Nitrates (bacteria)
- Leukocytes (WBCs)
- Glucose
- Ketones
- Bilirubin
- Urobilinogen
- Crystals
- Casts

White blood cells (WBC) and bacteria in urine as seen under a microscope.

BODY FLUIDS

- Types
 - Pleural (lung)
 - Synovial (joint)
 - Pericardial (heart)
 - Peritoneal (abdominal cavity)
- Tests
 - Cell count
 - WBC Differential
 - Crystal analysis on synovial fluid
 - Monosodium urate (gout)
 - Calcium pyrophosphate

An example of MSU crystals (gout)

Body Fluids

Mesothelial Cells (lining cells)

Macrophages having phagocytosed multiple RBCs

Malignant cells

Now let's switch gears and look at another area of the lab. Hint: you'll need a microscope

MICROBIOLOGY

MICROBIOLOGY

Different areas of study

- Bacteriology
- Parasitology
- Mycology (fungal organisms)
- Virology

BACTERIA

BACTERIA SHAPES

An example of a gram stain.

BACTERIA

Bacteria identification – Time to put on your detective hat!

- Culture growth
 - Different types of media used to grow organisms
- Tests
 - Organisms can be identified by using a flow chart
 - Tests like catalase and coagulase help identify gram positive cocci

PARASITES

Giardia lamblia

Tapeworm

Hookworm under the skin

MYCOLOGY

Aspergillus flavus

Scedosporium apiospermum

Trichophyton

VIROLOGY

IMMUNOLOGY

IMMUNOLOGY

- Study of the immune system
- Includes
 - Autoimmune diseases
 - Hypersensitivities
 - Immune deficiency
 - Transplant rejection

MOLECULAR DIAGNOSTICS

MOLECULAR DIAGNOSTICS

- Collection of techniques used to analyze biological markers in the genome and proteome
- Enzyme linked immunosorbent assay (ELISA)
- Polymerase chain reaction (PCR)

AS A MEDICAL LABORATORY SCIENTIST, YOU CAN....

- Work as a generalist at a hospital or clinic
- Work at a specialized lab or department such as ARUP, Lab Corp, Mayo Clinic, etc.
- Work for a vendor company like Sysmex, Ortho, Immucor, Stago, etc.
- Teach at a college or university
- Go on to medical school, dental school, etc.
- Microbiologist for a brewery
- Work for the USDA as a food microbiologist

